Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 355: 141775, 2024 May.
Article in English | MEDLINE | ID: mdl-38522676

ABSTRACT

The catalyst's composition and rationally designed structure is significantly interlinked with its performance for wastewater remediation. Here, a novel hollow cobalt phosphides/carbon (HCoP/C) as an efficient catalyst for activating peroxymonosulfate (PMS) was prepared. The ZIF-67 was synthesized first, followed by phytic acid (PA) etching and then heat treatment was used to get HCoP/C. The PA was used as an etching agent and a source of phosphorus to prepare HCoP/C. To analyze catalytic performance, another solid cobalt phosphides/carbon (SCoP/C) catalyst was prepared for comparison. In contrast to SCoP/C, the HCoP/C exhibited higher catalytic efficiency when used to activate PMS to degrade Bisphenol A (BPA). The results showed that about 98 % of targeted pollutant BPA was removed from the system in 6 min with a rate constant of 0.78 min-1, which was 4 times higher than the solid structure catalyst. The higher catalytic performance of HCoP/C is attributed to its hollow structure. In the study, other parameters such as BPA concentration, temperature, pH, and different catalyst amount were also tested. Moreover, the electron paramagnetic resonance (EPR) and radical quenching analysis confirmed that sulfate radicals were dominant in the HCoP/C/PMS system.


Subject(s)
Benzhydryl Compounds , Carbon , Metal-Organic Frameworks , Phenols , Carbon/chemistry , Phytic Acid , Peroxides/chemistry , Cobalt/chemistry
2.
Chemosphere ; 308(Pt 2): 136255, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36064019

ABSTRACT

Developing new catalysts for efficient degradation of micropollutants in water is of significant importance in advanced oxidation processes (AOPs). Herein, TiO2/C coated Co3O4 nanocages (Co3O4@TiO2/C) were synthesized and their performance on micropollutants degradation was evaluated. Specifically, cobalt-based Zeolitic imidazolate framework (ZIF-67) coated by a thin layer of titanium species and polydopamine (PDA) was used as a precursor for the preparation of Co3O4@TiO2/C by two-step calcination. The catalytic performance of peroxymonosulfate (PMS) activation towards the degradation of organic pollutants was investigated by using atrazine (ATZ) and Bisphenol A (BPA) as typical micropollutants. The efficiency and the effect of TiO2/C shell on the as-synthesized catalyst were analyzed by comparing Co3O4 derived from ZIF-67 and Co3O4/C derived from ZIF-67/PDA. ATZ degradation results showed that the Co3O4@TiO2/C catalyst was the most efficient for catalytic oxidation when 99.5% of ATZ was removed within 4 min, which is 57.5% and 74.6% faster than that of Co3O4@C and Co3O4, respectively. The enhanced performance of Co3O4@TiO2/C is attributed to their unique nanocages structure and improved specific surface area. The catalysis mechanisms and ATZ degradation pathways were presented based on the results of electron paramagnetic resonance (EPR), XPS, and LC-MS analysis. Our results might have added to the design of heterogeneous catalysts of large surface area for efficient PMS activation in AOPs.


Subject(s)
Atrazine , Environmental Pollutants , Cobalt/chemistry , Oxides , Peroxides/chemistry , Titanium , Water
3.
Environ Res ; 207: 112148, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34606843

ABSTRACT

Development of efficient catalysts for peroxymonosulfate (PMS) activation and further understanding its mechanism on organic pollutants degradation is of significant importance for advanced oxidation processes (AOPs). Herein, hollow (Co, Mn)3O4 catalysts were synthesized by calcination of Co, Mn containing metal-organic frameworks (MOFs) and further used to evaluate the effectiveness of organic pollutants (Bisphenol A (BPA), atrazine (ATZ), and diethyl phthalate (DEP)) degradation by PMS activation. The PMS utilization efficiency in (Co, Mn)3O4/PMS system (36.4%) was estimated to be 28.0% and 43.8% higher than that of Co3O4/PMS and Mn5O8/PMS system, respectively. Notably, the metal leaching in (Co, Mn)3O4/PMS system was significantly suppressed. The utilization efficiency also reveals an inverse proportionality relationship with BPA mineralization but decreases with increasing initial pH value. A synergy between oxides of Co and Mn was perceived to enhance PMS utilization efficiency and BPA degradation. The results indicate enhanced catalytic performance with (Co, Mn)3O4 compared to Co3O4 derived from Co-MOF and other reported catalysts, with 99% of BPA degradation within 4 min. The oxidation mechanism was then proposed based on the electron paramagnetic resonance (EPR) and XPS results. Our findings might have contributed to designing heterogeneous catalysts for efficient PMS utilization in AOPs.


Subject(s)
Environmental Pollutants , Cobalt , Nanotechnology , Oxides , Peroxides
SELECTION OF CITATIONS
SEARCH DETAIL
...